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RANKS AND DEFINABILITY IN 
SUPERSTABLE THEORIES 

BY 

D A N I E L  L A S C A R  

ABSTRACT 

We study the notion of definable type, and use it to define the product of types 
and the  heir of a type. Then,  in the  case of stable and superstable theories,  we 
make  a general  s tudy of the notion of rank. Finally, we use these techniques to 
give a new proof of a theorem of Lachlan on the number  of i somorphism types 
of countable models  of a superstable theory. 

O. Introduction 

As is well known, the ultrafilters and the complete types of a theory are both 

maximal filters of a Boolean algebra. Moreover,  Lindstr fm has interpreted 

ultrafilters over to as complete types over a certain structure. It is tempting to 

generalize some of the notions which have been introduced in the study of 

ultrafilters in order  to extend them to the study of types. A natural notion to look 

at is that of product, which leads to a condition on types, which we call 

well-definability. For ultrafilters over to this condition vanishes because all of 

them verify it. This is where stable theories come in: every complete type over a 

model of a stable theory is well-definable as follows from results of Shelah. 

If p is a complete definable type over a model ~ ,  then, for any ~t which is an 

extension of J/,  p has a priviliged extension over ~t. It will be called the heir of p 

on M. Some applications of this notion have already appeared in [9]. Yet another 

remarkable fact makes stable theories the natural framework for our  topic: the 

product of complete types of stable theories commutes: this has numerous 

consequences. Among them a useful "reciprocity principle" (Theorem 4, 7). It 

also leads to a general study of the notion of rank, and to the definition of a new 

rank U (Section 5), which in some sense is univeral and has very strong 

properties. As an application we give a new proof of the theorem of Lachlan [8] 
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on the number of isomorphism type of countable models of a superstable theory 

(this theorem generalizes the well-known theorem of Baldwin and Lachlan [2]). 

After this paper had been written in an initial French version the author 

became acquainted with the work of Shelah on forking which will appear in his 

book on stability [17]. Although this notion will not be used in this paper, let us 

make some remark on the relationship between our methods and those of 

Shelah: in Section 4, we prove that provided an ordinal-valued rank satisfies 

some very natural axioms, and that the theory is superstable, the relation "to 

have the same rank" for type p E S,(M) and p ' E  S , (~ ) ,  where M C_ ~ and 

p C_ p', does not depend on the particular rank used, and we give (Proposition 

4, 13) an equivalent condition which does not involve any notion of rank. If the 

theory is stable but not necessarily superstable, in Shelah's terminology, our 

condition is precisely equivalent to: p'  does not fork over M. 

Shelah has proved independently most of the results for forking and stable 

theories which correspond to various theorems of Section 4; in particular, 

Theorem 4, 4 (and hence Theorem 3, 4); 4, 7; 4, 15; and Corollary 4, 16. Theorem 

4, 12 can also be deduced from his results. He further proved that if p ' ~  S , ( ~ )  

and p = p '  I ~t then p' does not fork over ~t if and only if R ( p ) =  R(p'), 
whenever R is either the Morley rank or one of the many ranks he considers. 

Finally our proof of Theorem 4, 12 has been simplified by the referee. 

On the other hand, the notion of forking allows us to strengthen and to 

generalize various results of ours; statements and proofs will appear in a 

forthcoming paper. 

1. Notations 

The language L will be fixed, as well as a complete theory T in L ;  we shall 

assume that T admits elimination of quantifiers (that we may always do so, 

without loss of generality, is proved in [12]), and that T has no finite models. We 

shall sometimes also suppose that L does not contain any constant or function 

symbols (this will not restrict the generality of our results). L,  will denote the set 

of formulas whose free variable is among v0, v t , . . . ,  v,-l. 

If A is a set, we shall denote by .4 the set of finite sequences from A. If ti E ,4 

and ci = (ao, a l , - ' - , a , ) ,  then [~i [ ={ao, a , . . - , a , }  and B U ~i = B U[~i [. The 

symbol tT. will denote the sequence (Vo, V~,..., v._~); L(A) is the language 

obtained from L by adding a constant for every a E A, which we shall also 

denote a. If r E L and d E A, ~i = (ao, a~,. �9 a , )  then ~(~i) is the formula of 

L ( A )  obtained from r by substituting, for every i, 0 =< i =< n, a~ for vl. 

Let K(T) be the category whose objects are substructures of models of T and 
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whose maps are monomorphisms between such objects (see [14] p. 165). The 

letters J ,  ~ ' ,  ~ , . . .  will denote objects of K(T),  and 3,~, J/,~',-.., will always 

denote models of T ; A , A ' , B , . - .  M , M ' , - . .  are the universes of 

~ ,  ~ ' ,  ~ , - . .  JR, J R ' , . . . .  Since we have elimination of quantifiers the set 

does not depend on A[, provided that sr _C ~ ,  and will be denoted by T(~ ) .  

Let {x0, x l , "  ", x , , . . -}  be a set of new individual constants which we disting- 

uish from the individual variables, and set )?, = (Xo, xl,. �9 x,_~). An n-type over 

sr is a set of formulas of L(A  U )?.) consistent with T(sr A complete n-type 

over sr is a complete theory in L(A  U )?,) which extends T(~r S. (sO) is the set 

of all complete types over sO; and S.(O) = S,(T) whenever O e  K(T),  
The set S. (~r will be made into a topological space in the usual way (see [11]); 

if f is monomorphism from sr into N, we shall denote by f"  the corresponding 

continuous map from S . ( ~ )  onto S.(sr More precisely, if p e S,(~t), 

f"(p)={~(ao, a , , ' .  ",am-0; ~ EL()?,) ,  (ao, a , , "  ", a, , , -1)e/-~,  

q~(f(ao), f(a,),.  . ., f(a,,,_,)) e p}. 

When s~ C @, e~.~ is the canonical injection from s / i n t o  ~ ; we set i~,.,~ = ~" - -  a l f , ~ l  �9 

If si/C @ and/~e/0" ,  the type realized by/~ over d in At, denoted by t,(/~ st/), 

is defined by 

t.,(/~,s~)={q~()?~); q~ e L , , ( A )  and All=~0(/~)}. 

It is' clear that, if e//_C J / ' ,  t~,(/~ s~) = t~, (/~ s~), so that, context permitting, we 
shall write t(/~, s~) instead of t,(/~ ..4). 

2. Definable types 

DEFINITION 1. We say that d is an n-preschema on .d if d is a map from 

L(.~,) into L ( A )  such that for all k Eto, if ~ E L~(~,), then d ( ~ ) E L k ( A ) .  
Let ~ _~ .d, and consider the following set: 

d ( ~ ) = { ~ ( / ~ ) ;  ~ E L k ( x , ) ,  k Eto, / ~ E B  k, and d ( ~ ) E T ( ~ ) } .  

If this set is an n-type over ~,  we shall say that d ( ~ )  is defined by d over ~.  

DEFINITION 2. Let p E S, (~) ,  and ~ _C ~. We say that p is definable on ~t if 

and only if there is an n-preschema on ~t which defines p over ~ ; p is definable 
if it is definable on ~.  
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PROPOSITION 3. Let ~ C_ Jl and d be an n-preschema on ~ .  I f  d ( ~ )  is an 
n-type over ~t~ which includes T(J( )  and is deductively closed, then the three 
following conditions hold: 

1) I f  ~ E L ,  then T ( ~ ) F ~ d ( ~ ) .  

2) /f  r 1 6 2 1 6 3  and T k  ~ - *  q~', then T ( ~ ) k  d(~)---* d(~p'). 

3) If q~, r e L(e.) then T(~) k d(q~ --* ~')---~ (d((p)---~ d(@')). 
If, moreover, d(.1l) is a complete n-type, then conditions 4) and 5) are also 

satisfied: 
4) I f  q~ EL(x . )  then T(~t)F nd(q~)~-~d(a~o). 

5) I f  ~o,~'~L(~, ,)  then T(~)~d(~ n ~')~--*(d(~) ^ d(tp')) and 
T(~il) k d (9 v q~ ') <--* (d (q~) v d (q~ ')). 

PROOF. 1) Suppose that q~ ELk and let /~E Mk; then ~(G)E T ( ~ )  if and 
only if ~r d(J,~), if and only if d(~)(/~)~ T(~) .  So 

~ I: ve,(,~ <--, d(,~)). 

But this formula belongs to L ( A ) ,  and that implies: 

v ( ~ ) ~  ~ ~ d(~) .  

2) Suppose now that ~p, ~p' ~ L~ (~ )  and 

and let /~ E M k. If 

TF ~--> ~p' 

.~I=d(~)(G) 

then ~p(/~)Ud(.:f O, and since d(.///) includes T and is deductively closed 
~p'(/~) E d (~ ) ,  and 

,,u)-- a(~,)(t~). 

So 

and 

~1= v,~,, (d(~)--,. d(~')) 

T(~) F d(~)~ d(~'). 

Conditions 3), 4), and 5) are proved in the same way. 

DEFINITION 4. An n-schema on ~t is an n-presehema on ~t verifying 
conditions 1), 2), 3), 4). 
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If p �9 S,(~) ,  Y3 D M is defined by an n-schema on M, then p is well-definable 

over gl; p is well definable if it is well definable over ~. 

PROPOSmON 5. Let d be an n-preschema on M satisfying conditions 1), 2) and 
3), and ~ D M. Then d ( ~ )  is an n-type over ~. If d is an n-schema, then 

d ( ~ ) � 9  

PROOF. Suppose d satisfies conditions 1), 2) and 3). First we prove that d ( ~ )  
is closed under deduction: suppose that q~,~p'�9 L ~ ( Y . ) , / ~ B  k and 

~(/~)---~ ~p'(/~) �9 d ( ~ )  and ~( /~) �9  d (~ ) ;  we know that 

d (~ ~ ~') (/~)^ d (~) (/~) G T ( ~ )  

and from condition 3) 

'~'f, (d(r ~ ~ ')---~ (d(~)--~ d(~ ')) �9 T (~ ) .  

Since T ( ~ )  itself is closed under deduction: 

d(,~') (g) �9 r ( ~ )  

q~'(b) �9 d ( ~ ) .  

and 

Suppose now that ~o �9 Lk§ /7~ B k, and 

Let b' �9 ~ ; clearly 

and by condition 2) 

Vvo~(Vo, g) �9  d(~). 

k Vvo~p ~ ~p 

Vt~k+l(d(VVo~p) -'~ d(r  e T (~) .  

Since d (VVo~ (Vo,/~)) e T(~) ,  d (~0) (b', b) �9 T (~  ) and ~ (b', b) �9 d (~).  

To see why d ( ~ )  is consistent, it is sufficient to notice that 

3vo(vo~ Vo)~ d(~) ,  since from 1) d(3vo(vo~ Vo)*-*3Vo(Vo~ Vo)�9 T ( ~ )  and 
3vo(vo~ Vo)~ T(~) .  

Now it is clear from condition 1) that T(~)_C d(~) ,  so we have proved that 
d ( ~ )  is an n-type over ~. 

Suppose now that condition 4) is satisfied, ~ � 9  and 

q~(/;)~ d(~) .  Then d(~o)(/~)~ T(~) ,  and 7 d(q~)(g)�9 T(~) .  So d(Tq~)(/7)�9 
T(~) ,  and 7~o(g)�9 d (~) .  
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COROLLARY 6. If  d is an n-schema on sg, then d satisfies condition 5). 

PROOF. Indeed, let ~ _D ~r then d ( ~ ) E  S,(~r and from Proposition 3 d 

satisfies Condition 5). 

PROPOSmOY 7. Let d and d' be two schemata on ~ .  Then the three following 

conditions are equivalent: 

1) d ( J d ) =  d'(~t). 

2) For all q~ ~ L(~,) ,  ~/,~1= d(~0),~-~ d'(q~). 
3) For all sg D ~ ,  d ( ~ )  = d'(~t). 

PROOF. 
1)---.2): If q~ E Lk(~.) and / T E M  k, then 

~t [= d (q~) (G) if and only if J/I = d'(~o) (/~). 

So d'(,p)) and 

- -  t d (,p). 

2)--* 3): If q~ ELk (2.), and d E A k, it is clear that d (q~) (d) (~ T ( ~ )  if and only 
if d '0p)( t~)E T(~t). So d ( ~ )  = d'(~t). 

3)---~ 1) is obvious. 

DEFINITION 8. Let p be a definable complete n-type over Jr, t, and ~t C_ ~ .  
The heir of p on ~ is the type d(~r where d is any schema on J/d defining p. 

From Proposition 3, we see that in fact p is well-definable, and clearly d(,.~t) 
does not depend on d, provided that d(~t)  = p. Of course d ( ~ )  is an extension 

of p. 
The proof of the following proposition is an easy exercise: 

PROPOSITION 9. 
1) Let J,t D ~ D ~,  and p be a definable complete type over Jt~. Then the heir of 

p on ~3 is an extension of the heir of p on ~ .  

2) If  ~ C_ ~r p E S, (~r and p is definable on ~ ,  then p is the heir of p I ~ .  

3) If  ~ C_ ~ 1 C  sg, and p is a dgfinable complete type over ~ ,  then the heir of p 

on sg is the heir on sg of the heir of p on ~ .  

4) Let f be an isomorphism from sg onto sg', atg C_ sg, ~ '  C_ sg', such that 

M = f (M') ,  and p E S,(sg) such that p is the heir o fp  I ~ .  Then f (p)  is the heir 

o f f ( p )  I Jtd. 
5) Let ~ C,ff  C ~,  /~= (bo, b~," .,b,-1) E B " ,  ~" be a map of 1 E o) into n, 
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/~' = (b~(o), b,(1),--., b ~(,-~))./f t(/~, ~t) is the heir oft(b, ~ ) ,  then t(b', ~t) is the heir 

of t(b', ~ ) .  

We shall now illustrate these notions by examples. 

EXAMPLE 1 (ultrafilters). As far as the author knows, the connection be- 

tween ultrafilters and complete types first appears in [10[. We shall briefly recall 

the essential facts. 

Let L be the language containing, for all n E to an individual constant symbol 

_n, for all n E to and A C to" an n-placed predicate symbol _A, and for all n E to, 

and any map f from ton into to an n-placed function symbol f ;  N will be the 

L-structure whose universe is to and where _n is interpreted by n, _A by A, and .f 

by f ;  let To be the theory of N. Then To admits elimination of quantifiers and is 

universal. 

Let p E S,(N),  and consider 

o t n ( p ) = { a ; a  c t o  ~ and _A(.~n)Ep~. 

It is not difficult to see that an(p) is an ultrafilter over to n. Let /3(to ") be the 

topological space whose universe is the set of all ultrafilters over to n, with 

C = { { p ; A  E p } ; A  Cto ~} a basis /0r clo~ed sets. We see that /3(to n) is the 

Stone-Cech compactification of to w, if ~o n has the discrete topology. It is a 

compact Hausdortt  space, and C is ' also a basis for the open sets. 

It is easily checked that an is a one-one  continuous map from Sn(N) onto 
/3(ton). 

Let ~ C_ ~ '  be models of To and ti E M'.  We denote by ~ ( a )  the structure 

generated by JR and a in ~ ' .  The following result appears in [9]. 

PROPOSmON 10. Let ~r < J,t, rind ~ E M ~. Then N ( a )  is isomorphic to 
~r~,~/p, if p = ot~(t(a,~r 

We now exhibit a link between ultrafilters and definability. 

PROPOSITION 11. Let p E S.(.Ac); then p is definable. 

PROOF. For every k E to and q~ E Lh (~n), set 

A ( ~ ) = { t i ; d ~ t o  h and ~ ( d ) E p } ,  

and d ( r  A (~0)(tT~). It is clear that d defines p over N. 

It will be obvious from Proposition 22 below that it is impossible that for every 

~ ,  model of T, and p E S1(~),  p be definable. But we can use the following 

result, due to Ressayre, to prove something stronger: 
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PROPOSITION 12. Let At C_ At' be a model of To, a E M ' -  M, and suppose 

that t(a, At) is definable. Then At (a)  is an end-extension of At (that is, for all 

b E M ( a )  - M and c E M, At(a)l=c<_b; the interpretation of <= in X is just the 

natural ordering). 

PROOF. Suppose b E M ( a ) ,  c ~ M' ,  and 

At(a ) l= b <-c. 

There exist n E to, i a map from to* on to, and d E M "-~ such that: 

A t ( a ) l = b = i ( d , a ) .  

Since t(a, At) is definable, there is ~ E L I (M)  such that, for all m E M 

At (a ) t= i (d ,a )<-m if and only if At l=O(m) .  

The Peano axioms are in To, so there is Co which is the least element of At 

verifying ~(v0). Then: 

At(a)t=b<=co ^ ~(b  <= c o -  1). 

So b = c o a n d  b E M .  

COROLLARY 13. 

definable. 

PROOF. 

I[ ~r < At, N ~  At, then there is p E SI(At ) which is not 

Let a E M - N;  the following set of formulas: 

{Xo<=a}U{xo~ m ; m  E M } U  T(At) 

is consistent. Let  At' be an extension of At containing an element b verifying all 

these formulas. Then At(b) is not an end extension of At and t(b, At) is not 

definable. 

The literature concerning/3 (to) is plentiful. We shall see that we can interpret 

some notions which have been introduced over/3 (to) in model theory using the 

notion of definability. 

If F and G are ultrafilters over to, set 

F x G = { A ; A  Cto 2 and { n ; { m ; ( n , m ) E A } E F } E G } .  

It is well known (see [4], for example) that F x G is an ultrafilter over to2, and we 

have: 

PROPOSmON 14. Let p and q belong to S~(X), ~c < At, b E M realizing p and q 

respectively over X. Then 
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a2(t(a, b ), 2r = al(t(a, Y))  • a~(t(b, N)) = a~(p) x a~(q) 

if and only if t(a, 2C(b)) is the heir of t(a,N) on N(b). 

PROOF. First, suppose that t(a, 2C'(b)) is the heir of t(a, 2r on 2r Let 

A _C to ~, and set 

B = {n;A(xo,  n ) E p } .  

If d is a schema on A; defining p, then 

•1= d(_A (Xo, Vo)) ~, _B (Vo) 

and the following are equivalent 

_A (Xo, xO ~ t((a, b), N )  

_A (Xo, b) ~ t(a, X(b  )) 

~l=_B(b) 

S E a , (q) .  

So A E oe2(t(a, b), Jr') if and only if {n ; A (Xo, n) E p} E a~(q). But, for every 

n Co ,  A_(xo, n ) E p  if and only if { r n ; ( n , m ) E A } E a , ( p )  and we are done. 

Suppose now that a2(t(a, b ) , N ) ) =  a~(p)x  a2(q). Let ~ ' D  J/, and a ' E  M'  

such that t (a ' ,X(b))  is the heir of p on 2r Then, from the first part, 

a:(t((a,b),X))=a2(t((a',b),A;)),  and since a~ is one-one, t((a,b),2r 
t((a', b ) ,N) and also t(a, 2C'(b ))= t(a',2C(b )). 

Of particular importance are also the Rudin-Keisler and the Rudin-Frolik 

order. 

Let F ~/3(oJ), and i a map from w into w. Then the set 

{ A ; A  Cto and i - I ( A ) E F }  

is an ultrafilter over ~o, which we shall denote by i'(F). For F, G E/3(to)  we say 

F --- G if and only if there is a map i from to on to, such that G = i'(F). The 
R K  

following is easily proved: 

PROeOSI:rION 15. Let p and q belong to S~(N). Then a~(p) >->_ a2(q) if and only 
R K  

if every extension of N realizing p realizes q. 

DEFn~mON 16. Let (E ; i E to) be a sequence of ultrafilters over w ; we say 
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that  this sequence  is discrete if there  is a sequence  (At ; i E to) of pairwise disjoint  

subsets  of to such that,  for  all i E to, At E E.  

If (F~ ; i E to) is a sequence  of ultrafil ters ove r  to, and G E/3  (to), then  

{ A ; A  Cto and { i ; A  E F ~ } ~ G }  

is an ultrafil ter over  to. It is the limit of ( E ; i  ~ to) a long G. If (F~;i ~ to) is 

discrete  we shall deno te  that  ultrafil ter by E [ ( E ; i  ~ to), G ] .  

DEFINITION 17. We  say that  F ->_ G if there  is a discrete  sequence  (F~ ; i E to) 
R F  

such that  F = Y,[(F,;i  ~ t o ) , G ] .  

It  is p roved  in [4], that  the relat ion -> is a p reorde r ing  and that  F _-__ G implies 
R F  R F  

F -> G. Now we-have :  
R K  

PROPOSITION 18. Let p, q E S~()/'), and suppose that a~(p ) >- a~(q);  then there 
R F  

exist eg ~_ 2r a E M realizing p over .If, b E N(a ) realizing q over )r such that 

t(a, )~'(b )) is definable, t*) 

PROOF. Let  (F~ ; i E to) be  a discrete  sequence  of ultrafil ters ove r  to such that  

al(p)=E[(F~;i  Eto ) ,~q (q ) ] ,  and let ( A , ; i  ~ to) be  a sequence  of pairwise 

disjoint  subsets  of to, such that  for  all i ~ to, At ~ F ,  W e  may  suppose  that  

{At; i E to} is a par t i t ion of to. Le t  h be  the m a p  f rom to into to such that,  for  

i E to, i E Ahto, and let d~t be  an extension of N and a E M realize p over  X. 

Claim 1: If b is the e l emen t  of N(a)  such that  

d, tt= b = _h(a), 

then t ( b , X ) =  q. Indeed ,  _A(xo)Eq if and only if A E ~q(q), if and only if 

U ,~AA, Ea~(p); but  U ,~AA, = h-~(A). So A_(xo)Eq if and only if 

Jll=h_~(A )(a) 

and it is clear  that  this is equivalent  to 

~tl-- _A (_h(a)) 
and to 

~tl= _A(b). 

(*) A. Blass has proved that the converse is not true. 
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Define now d, a preschema on ?r for all n E to, and ~ E L,+I 

d (q~(Xo, tS,))= A (q~)(b, 6,) 

where A (~) = {(i, )7); i E to, )7 E to" and {n; XI= ~(n, )7)} ~ E}. 

One can check that d is a 1-schema on :r 

Claim 2: d(?C'(b)) is an extension of p; for all B C to, _B(xo) E p if and only if 

A = { i ; i E t o  and { n ; n E t o  and ?r 

But _A(b)= d(B_(xo)), and so B_(Xo)Ep if and only if _B(xo)E d(:C'(b)). 
Claim 3: h_ (xo) = b E d(?C'(b)). We have 

d (_h (Xo) = Vo) = _A (b, Vo), where 

A = { ( i , y ) ; ( i , y ) E w  z and { n ; n ~ t o  and X l = h ( n ) = y } ~ E  }. 

But {n; n E to and ?(l=_h(n) = y} = A ,  and Ay E E if and only if y = i. So 

~t  I = d (_h (Xo) = vo))  ~ b = Vo 

and h_ (xo) = b E d(?((b )). 
Now let M'  be an extension of ?r generated by .A:(b) and a '  E M',  where 

t(a', ?r = d(?C'(b)); then M' is generated by a '  alone, J / ' =  N(a ' ) ,  and M'  is 

isomorphic to A:(a). 

EXAMPLE 2 (abelian groups). Let L be the language whose similarity type is 

(0, + ,  - ,  = ,  R., n _-> 1), where 0 is a constant symbol ,  + ,  - are binary function 

symbols, and each R,  is a 1-placed predicate symbol. By a group we mean an 

L-structure satisfying the axioms of abelian groups and the formulas 

Vvo(R.(vo)~--~3v,(nv~ = Vo)) for n _- 1. 

We shall fix an infinite group G, and let T, be the theory of G. It is proved in 

[19] that 

PROPOSITION 19. T1 admits elimination of quantifiers. 

From this we can deduce (see [3]): 

PROPOSITION 20. For all models M of T~, and p E S,(M), p is definable. 

A consequence of this and of Proposition 22, below, is that 7"1 is stable. 

Suppose now that G is a torsion-free group; therefore every model of T is a 

torsion-free group. Let Mo ~ M~ ~ M2 be models of 7"1, and a E M2. We shall 

denote by M,(a)  (i = 0, 1) the pure subgroup generated by M~ and a. We have: 
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Mi(a) = {m ;m E M2 andthere  exist n ~  0, k E to, b E Mi suchthat n m =  ka + b}. 

We leave the following as an exercise for the reader: 

Claim 1: If a E M 2 -  M~, then t(a, ~1) is the heir of t(a, Mo) if and only if 

~ , ( a )  = ~to(a) + ~,. 
This can also be expressed by 

Claim 2: If a E Me, then t(a,.~t~) is the heir of t(a,~o) if and only if 

JR,(a )/~o = J, to(a)/.~o ~ ~/,~,/~o. 

EXAMPLE 3. Let p be an isolated complete n-type on sr then p is definable. 

Let 0(#.),  where @ E L, (A) ,  be such that p is the unique complete n-type on 

~t containing @(#.). Then, for every k E to, @ E L,+k, and ti E A k, we have 

q~ (~,, d ) E p if and only if V t3. (~b (~.) ---* q~ (t~,, a )) E T(~t).  

So if we set 

a (,p (~., ,~,)) = v,~. (,/,(,~.)---. ,p (,~., ,~,)) 

d defines p on ~ .  

EXAMPLE 4. There are complete types which are definable but not well- 

definable. For example, let T be the theory of algebraically closed fields of 

characteristic 0, C be the field of complex numbers, Q the field of rational 

numbers, and consider p, the unique complete 1-type over Q containing X2o = 2. 

This type is definable, from what we have said in Example 3. 

Suppose that there is a schema on Q, say d, which defines p. Then one and only 

one of the formulas Xo = V~ and Xo = - V~ belongs to d(C), so one and only 

one of the formulas d (Xo = Vo) (~/2 or d (Xo = Vo) ( -  V~) is true in C, and this is 

impossible since d(xo = Vo)E L(Q), and X/2 and - X / 2  realizes the same type 

over Q. 

If T is ~-stable,  it is possible to characterize the well-definable types: they are 

those whose degree (as defined in [12]) is 1. Shelah ([17]) has proved a more 

general result which characterizes these types for any stable theory. 

We go back now to the general theory. Everything here rests on the following 

theorem, which has been proved by Shelah ([16]), and Baldwin ([1]): 

THEOREM 21. If T is stable, then every complete type on M is definable. 

This theorem admits a converse ([16]): 
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PROPOSITION 22. If, for every ~1 E K ( T)  every complete type on ~r is definable, 

then T is stable. 

PROOF. If II AII = )t, there are no more than )t Iml maps from L into L ( A ) .  

In [9] there is an application of the notion of heir to two-cardinal problems in 

countable stable theories. 

3. Product of types 

In this section, we suppose that T does not contain any function symbol. 

DEFINITION 1. Let p ~ S, (:R), p definable, q ~ S~(M). We define the product 

p • q as the n + l complete type on M realized by (d ^/~), where: 

- 6 E M", JR'D M, M'  is (II M II)+-saturated and t(/~ M) = q. 

- d E M'", and t (d ,M O/~) is the heir of p on M U/~ 

We should stress, of course, that the definition is coherent, i.e. provided the 

conditions above are satisfied, t((d ^ b), J l )  does not depend on the particular d, 

/~ and M'  chosen. It is possible to define p x q in a purely syntactical way, but 

this leads to complicated notations. 

Examples 1 and 2 of Section 2 illustrate the notion of products of types. In 

particular, the product of ultrafilters corresponds to the product of types. The 

two following propositions are easily proved: 

PROPOSITION 2. Let p E S, (~t), p definable, :R D_ iR, p'  the heir of p on vR', 

q U S~(JR), and q ' ~  S~(AL'), q C_q'. Then p ' •  is an extension o f p  xq .  

PROPOSITION 3. Let p E S,(~t),  q E Sj(vR), p and q definable. Then p x q is 

definable. 

In [9], we gave a proof of the following theorem, using the notion of q-rank. 

The idea of the proof presented here was suggested by Lachlan. 

THEOREM 4 (commutativity of the product of types). Suppose Tis  stable, and 

let At C_ ~t ', d E M'", G E 1~1", p E S, (~t), q ~ S~ (AL). I f  t ((d, 6), ~t ) = p • q, then 

t((b, d ) , ~ t ) =  q x p. 

PROOF. Let ~/1_D AL such that J/,tl is IIMIl+-saturated. Let d and d'  be 

schemas defining p and q; define the sequences (dk ; k E to) and (Gk ; k E w) by 

induction on k such that: 

- d k E M ~  anddkreal izes  d( , ILU U ]diJU U [/~1) 
j<k j<k 
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over ~ U U ,~k l a, l u  U I 1. - / ~  E M l  and /~ realizes 
d'( u U,  la, lu over u U,. la, lu 

By Proposition 2, 9, if i > j, ti~ realizes the heir of p on ~ U ]/~ ], and therefore 

(K~^/~) realizes p x q over M. Similarly, if j ~ i, (/~^ ~i,) realizes q x p over M. If 

we suppose the theorem false, then there exists q~ ~ L,+~(M) such that: 

if i>j ,  then J,/,l=-q~(/~,ti~) 

if j _-> i, then ~t~ 1= q~(/~, ~i,). 

Therefore, q~ has the order property (see [16]), and T is not stable. 

REMARK. If we do not suppose T stable, it is possible for p and q to be 

definable complete types on M, and for the conclusion of Theorem 4 to fail: this 

is shown by the example of ultrafilters over to (Example 1 of Section 2). 

We shall suppose, until the end of this section, that T is stable. If J/C_ M, we 

shall denote by h" ,~.~ the map from S,(M) into S,(M), which maps p ~ S. (J,t) to 

its heir on M. Then: 

THEOREM 5. h ~,a is a continuous map. 

h" -' U PROOF. We have to show that if U is a clopen set of S,(M) then (,,~,,) ( ) 

is an open set of S.(~t). Suppose that 

U = { p ; p E S , ( M )  and q~(~. ,~)Ep} where q~EL.+k and a E A  k. 

Let ~ '  _D M, ~ '  is (ll A [[)+-saturated, and q E S. (~ ) .  Then the following are 

equivalent: 

1) ~p(~,,d)~ h~(q) .  
2) For any/~ E M'", if t(/~ ~t U a) is the heir of q on ~t U a, then ~ '  I= W(/~, a). 

3) For any/7 E M'", if t(/~, ~t) = q and t(a, ~t U/~) is the heir of t(a, ~t), then 

Let d be a k-schema on ~ defining t ( a , ~ ) ,  and set ~p~ = q~(6., Sk). Then 3) is 

equivalent to: 

4) For any 6~m'", if t ( /~,~t)=q,  then ~ ' ]=d(qh)(6) .  Therefore 

h" ~- ' tU)={q;qES,(~t)  and d(qh)(X,)Eq} and this is a clopen set of 

REMARK 1. This theorem proves that the map h ~,~ is a continuous section of 

i~.~. This property is characteristic of h D.~. Indeed if h '  is another continuous 

section of i~,~,, then h'  and h~.,~ are identical on the set {t(rf i ,~);r~ E M " }  

which is dense in S. (~t). 
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REMARK 2. Theorems 4) and 5) imply that the map from S , (e f )  x S~(ef) into 

S.+,(~l) which maps (p, q) to p x q is continuous in each of the two variables. 

But it is not a continuous map: suppose n = l = 1, for the sake of simplicity. 

The set x = {t((a, b); e f ) ;  (a, b) E M 2} is dense in S2(ef); on the other hand, if 

(a, b) @ M 2, then t((a, b), e f )  = t(a, e f )  x t(b, ef) .  If we suppose the product 

continuous, then its range is a closed set and includes x. So it is an onto map; but 

we can easily see that if p ~ St(eft) and p is not realized in ef, then the 2-type 

generated by p U {Xo = x~} is not the product of two complete 1-types on ef. 

The proof of the following lemma is easy. 

LEMMA 6. Let ef C_ ~ and p E S , ( ~ ) .  I f  for all sg~ such that ef C_ ~z C_ ~ and 

A ~ - M  is finite, p I ~ll is the heir o [ p l e f ,  then p is the heir of p I ef. 

DEFINITION 7. Let ef  _Ccg, ef  C_ ~' C_ ~g and ef _C ~ _C %~ We say that sr and 

are independent over ef, if for every d ~ / ~  and/~ E/3,  t(d, ef  U/~) is the heir 

of t(ci, ef) .  

By Theorem 4, we see that the independence relation is symmetrical. By 

Lemma 6, if ~ and ~ are independent over ef, and d E ft., then t(& 9 )  is the 

heir of t(& ef).  

THEOREM 8. Let ef C_ ef '  C_ ~ and ef C_ ~r C_ ~,  and suppose that ~ and ef '  

are independent over JR. Then h n o . . . .  ~.~ t . , . ~ - -  i ~ , ~ o h . . ~ .  

This means that the diagram: 

s.(d)  

&(ef) 

commutes. 

PROOF. All the functions which we utilize are continuous. Since 

{t(rh, ef ' ) ;  rh E M'"} is dense in S,(ef ') ,  it is sufficient to prove that, for every 

rh E M'" we have: 
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h~.~o i~,,~(t (rh, At')) = i~,.~,o h~,,~(t(th, At')). 

Let r~ E M " .  Then t(tfi, At') has a unique complete extension to ~,  viz. its heir 

on :~, which is also t(th, 59). On the other hand i~.a(t(th,~d))=t(th, M). 
Therefore:  

i~.ah ?~, ~(t(th, At')) = t(th, M). 

We also know that i~, ~(t(th, At'))= t(rK At), and the hypothesis implies that 

t(th, M) is the heir of t(n-L At). Therefore:  

h ~.ao i~, ~(t(tfi, At')) = t(th, d ) .  

PROPOSITION 9. Let At C_ M, At C_ ~ C_ At', and suppose that At' is 

([I A ]1 + II B [[)+-saturated. Then there is sit' C_ At' which is At-isomorphic to M, and 
such that sit' and ~ are independent over At. 

PROOF. First consider the case where A - M i s  finite. Let a be a sequence 

which enumerates A - M, and d '  be such that d ' ~  3]r' and t(d ' ,  ~ )  is the heir of 

t(&At).  By Proposition 2, 9, 5), it should be clear that ~ and At U d '  are 

independent  over At. 

For the general case, introduce for each a E A a new constant symbol ya, and 

consider: 

E={~0(yoo, ya , , . . - , y  .... ); nero ,  (ao, . . . ,an-OEA",  ~oELn(@)and 

~p (~,) E h?~(t(ao," ", a,_,), At)}. 

By the first part of this proof, every finite subset of E can be interpreted in At'. 

Therefore  E can be interpreted in At'; if f (a)  is the element of M' which 

interprets ya (in a fixed interpretation of E )  then f is an At-monomorphism from 

M' into At', and for every d E ft., t(f(d), ~ )  is the heir of t(d, At ) = t(.f(a), At). 

4. Ranks 

In this section, we shall suppose that L does not contain any constant on 

function symbols, and that T is stable. We denote by On* the class of ordinals 

plus one element ~, being understood that a < oo for any ordinal a. We set 

S*(T)  = U .~ .  U a~Ko-,S,,(d). 

DEFINITION. A rank-notion is a map R from S*(T) into On*, satisfying the 

following axioms: 

1/ If M C _ ~  and p E S, ( ~  ), then R ( p ) ~ R ( p  IM). 
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2/ If f is an isomorphism from M on to M', and if p ~ S . ( M ' )  then 

R (p)  = R ( ] (p ) ) .  

3/ If M _C ~ and p E S.(M), then there exist p, E S . ( ~ )  such that p _Cp,, 

and R(p) = R ( p l ) .  

4/ For  M and p E S.(M), there is a cardinal h such that, for  all ~ _D M, if 

R(p) < ~, 

I I {p1;p lES . (~) ,pCp ,  and R(p)=R(p , ) } I I~A .  

5/ If p E S . ( M ) ,  there exists Mo_CM with Ao finite such that R ( p ) =  

R(p r 
Axioms 1/ and 2 / a r e  equivalent to the following single axiom: 

1'/ If f is a monomorphism from M into M', and p E S.(M'), then R(p) < 

R(f(p)). 
Most of the ordinal-valued ranks which have been defined satisfy these 

conditions. Morley, in [12], defined a rank-notion which we shall denote by R0. 

(In fact, he defines Ro only for 1-types, but there is no difficulty in generalizing 

his definition.) t*) 

It should be noted that if T is superstable, then there exists a rank-notion R 

such that, for every p E S*(T), R ( p ) < ~ .  Take for example Deg as defined in 

[15], or rank as defined in [17]. The converse is true (cf. [15] and the remarks at 

the end of this section). 

In the following, R will always denote a rank-notion; R ( d , M )  will be 

R (t(d, M)). 

DEFINITION 2. Let R and R '  be two rank-notions. We say that R and R '  are 

equivalent if for any M C ~ ,  n ~ to and p E S , ( ~ ) s u c h  that R ( p ) < o o  and 

R ' ( p ) < %  R ( p ) = g ( p  1M) if and only if g ' ( p ) = R ' ( p  IM). 

PROPOSITION 3. Suppose p ~ S, ( M ), and R(p)<oo .  Then there exists ~t ~_ M, 

such that, for any ~ ~_AI and p~,p2, extensions of p in S , ( ~ )  such that 

g(p~) = R(p2) = g(p) ,  if pL# p2 then pl I ~ t#  p2 I ~t. 

PROOF. Let A be the cardinal given by axiom 4/ in  Definition 1, and ~t _D M; 

~t is (IIA II § A +ll T ll) +-saturated. We shall see that A/ fulfills the required 

condition. 

For any q~, q2 ~ S, (J/) ,  q~ # q2, let ~(q~, q2) be a finite substructure of JR such 

(*) For superstable theories, axiom 5 follows from axioms 1-4. Furthermore the theorems of this 
section can be extended to rank-notion for stable theories satisfying only axioms 1-4. This more 
general result makes use of Shelah's notion of forking. 
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that q, I ~(q, ,  q2)~ q, I ~(q, ,  q2) and set ~ = sr U I,.J {C~(q,, q2); 

q~, q2 E S~ ( ~ ) ,  q~ ~ q2, p C q~, p E q2 and R (q~) = R (q2) = R (p)}. We see that 

II c II--< A + II A II, and if q~, and q2 are two distinct extensions of p in S , ( ~ )  of the 

same rank, then q~ I ~ #  q2 I c~. 

Suppose now that 

~3 D_ ~ , p , , p 2 ~  S , ( ~ ) , p  C p, ,p C p2,p~# p: ,R(pl)  = R(p2) = R(p) .  

We may suppose that B -  M is finite, and let G be a finite sequence which 

enumerates this set. There exist / ~ / ~  such that t(/~~, ~ ) =  t(b ' ,~)  and a 

q-isomorphism f from ~,  t3/~ onto qg t3/;2. Therefore t(P,  I ~  t3 b-) and 

/~(p2 I cd t3/;) are distinct extensions of p in S,(qg t3/~) of the same rank. So 

f(P, I c~ U b) [ c~/~(p: t ~ O/~) [ cr but t(P,  I qr U b) t c~ = t(Pl I ~ ) =  P, t 
since f is a c~_isomorphism, and similarly t(P2 I c~ U/~) = p2 I cC Therefore 

p, I ~ ~ p2 I ~ and p, I ~a ~ p~ I ~ .  

THEOREM 4. Let p ~ S,( ~l~ ), sg D_~ and p' the heir of p on s~. Then: 

~/ R(p')= R(p). 
2/ If  R (p ) < ~, then p ' is the unique extension of p in S~ ( s~) with R (p') = R (p ). 

PROOF. We shall prove the theorem by induction: suppose it is true for every 

d~, ~1, p, provided that R (p) < a (with a ~ On*), Clearly, in order to prove that 

1 / i s  true when R ( p ) =  a, we may suppose that sr is a model of T. So set 

/3 = inf{R(p');  ~ is a model 

the heir of p on JR~} 

and suppose for contradiction 

of T, ~,_D~/,  p E S . ( ~ ) ,  R ( p ) = c t  and p'  is 

that /3 < a. There exist ~ ,  ~ ,  p, p '  as required 

such that R (p') =/3. Let ~ '  be a II MI II§ model of T containing .~1. By 

Proposition 3, 9, there exists d/2 such that ~ C ~2 C d~', ~2  is .//-isomorphic to 

./~, and egt and At2 are independent over A[. Let q be an extension of p in S, (~2)  

such that R ( q ) =  R(p) .  By isomorphism, q is not the heir of p. 

Now by Theorem 3,8, if q '  is the heir of q on ~ ' ,  q' is an extension of p'. By 

the definition of/3, R (q') _-__/3, and since R (p') =/3, we see that R (q') = R (p') = 
/3. But/3 < 0% and by the induction hypothesis, q' is the heir of p', so it is the heir 

of p. Therefore, q, which is its restriction to ~2, is the heir of p, which is 

impossible. 
Let us turn to part 2/. Suppose p E S, ( ~ ) ,  R (p) = a, and q is an extension of 

p in S.(M) with R ( q ) =  a. By Proposition 3, there is ~ , ,  such that, for every 

_D ~1, and p~, p2 extensions of p in S , ( ~ )  such that R(p  0 = R(p~) = R(p) ,  if 

p~ ~ p2, then p, I . / ~  p2 I ~ .  This implies that if q is an extension of p in Sn(~)  
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such that R(q)  = R(p) ,  q has the unique extension in S , ( ~ )  of the same rank, 

and from the first part of the proof, this extension has to be the heir of q on ~.  

Now, if At' is a model containing M and ([[a [[+[[M, II)+-saturated, there 

exists At:_CAt' which is At-isomorphic to At1, which has therefore the same 

properties, and such that M and At2 are independent over At. Let r be an 

extension of q in S,(At') such that R(r)  = R ( q )  = R(p) ,  so that r is the heir of 

r I At2. By Theorem 3,8, this implies that q is the heir of p. 

COROLLARY 5. I f  p ~ S,(At) and R 0 ( p ) < %  then the degree of p is 1. 

This was first proved by Lachlan. 

PROPOSITION 6. Let R and R '  be rank-notions, and b, ~ E 1(1, M C_ At, and 
suppose that R (6, sg U 6) = R (6, M) < oo. Then R '(6, M U b) = R '(~, M). 

PROOF. We first assume that M is a model of T; then by Theorem 4, 

t(/~ M U 6) is the heir of t(/~ M) and by Theorem 3,4, t((6, M U 6) is the heir of 
t(~, M U 6). Therefore R '(6, M U 6) = R'(?, M). 

To prove the general case, suppose At' is an elementary extension of At which 
is ]] M II+-saturated, and construct first t?l E/~r', next 6 E / ~ ' ,  such that: 

t(& M) = t (6 ,  M) and R '(e,, M) = R '(cl, At) = R'(3, M) 

t (6^g ,M)  = t(61^6~,M) and R(b1, At U 6 , )= R(bI, M O 6 0 =  R ( b , M  U e). 

It is clear that t ( b , , M ) =  t(b,M), R(bl ,  M) = R ( b , M )  and R ' (~ ,M U 6 ) =  

n'(e,, u s 
Now suppose that R ( / ~ M U a ) = R ( / ~ M ) < ~ .  Then R(bl ,  M U 6 1 ) =  

R (61, M) = R (6i, At U 61) < ~, and we may deduce, by axiom 1/ 

R ( s  = R(61, At U e). 

By the first part of the proof, we get 

n'(el ,  At u &)= n'(a1,At) = n'(el,  so) 

and, again by axiom 1/ 

R '(el, M) = R '(E,, M U / ~ )  = n '(e, M) = n '(6, M U/~) .  

By taking R ' =  R, we get: 

THEOREM 7 (reciprocity principle). Let b, 6 E IQ, M C_ At, and suppose 
R(b , s r  U g ) < ~  and R(g ,M U/7)<  ~. Then 

R ( / ~  U t?)= R(b, M) /]" R (tT, ~ U/~) = R(e , M) .  
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REMARK. This principle generalizes the exchange principle: Let sg _C ~ such 

that for every a E A,  R ( a )  = 1, or even more generally such that the rank of any 

complete extension of t (a)  is 0 or equal to R(a) .  Then, for all ~1 C_Jff, a C A ,  
and c ~ M, if t ( c ,N)  is not algebraic, but t(c, J3 U a) is, then t ( a , ~  U c) is 

algebraic. 

PROPOSITION 8. Let M C_ ~ ,  b, e E IV1, and suppose Ro(b, ~ U e) = Ro(b, ~ )  < 

and Ro(e, ~ U b) < ~; then d(b, M U e) = d(b, ~ )  if and only if d(~, ~ U 5) = 
d(e, s~). 

Here d(b, ~ )  denotes the degree of t(b, ~ )  as defined in [12]. 

PROOF. Given the hypothesis, the following are equivalent: 

d(e, s~) = d(e, s~ U b). 
t(g, .if) has a unique complete extension of same rank over s~ U b. 

For any J/,/' _D A/, b', c' E M'  such that t(/~ s~) = t(b --7, s~), t(g, stl) = t(c', s~) 

and Ro(b', s~ U c') = Ro(b', sg), we have t(b '^ c', s l )  = t (b  ^ g, st).  
This last condition is symmetric in /7 and g, and the proposition is proved. 

EXAMPLE. Dickmann [6, p. 179] asks the following: Let .~/C A/such that, for 

any a E A, Ro(a)=  1, and d ( a ) =  1, and suppose that sq is algebraically 

independent. Let b E M, an algebraic point (that is Ro(b) = 0). 
Is it always true that d (b )=  d(b, ~ ) ?  

Answer: Yes. 

Otherwise there would exist ~ o C ~ ,  Ao finite, and a E A  such that 

d (b ,~o  U a ) <  d(b,~o).  But 

Ro(b, ~o O a)  = Ro(b, s / )  = O. 

Therefore Ro(a,~toU b ) =  Ro(a,.do) = 1, and d ( a , ~ o U  b) = d(a ,~to)= 1 and 

this is impossible. 

From now on and until the end of the Corollary 17, we shall suppose that T is 

superstable; R1 will denote a rank-notion such that, for any p E S * ( T ) ,  
R~(p) < oo. 

THEOREM 9. A ny  two rank-notions are equivalent. 

PROOF. Let R and R'  be rank-notions, ~t C_ N, p E S,(N),  and suppose that 

R ( p ) =  R( p  I ~ t ) < ~ .  We have to prove that R ' ( p ) =  R'(p  I s~). 
Let ~ _D ~, and ~ E M" be such that t(g, ~ )  = p; then for any/~ E/~, we have 

R ( ~ , ~ )  = R ( ~ , ~  U/~) < oo. 
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By Proposition 6, applied to R, R~, 

Rt(/~, M U ( )  = RI(/~ sit) 

and, since R~(/~ sit U tT) < ~ ,  

R '(~, sit O ~) = g '(6, sit). 

And this, together with axiom 5, easily implies 

R '(~, ~ )  = R '(~, sit) = R '(p) -- g '(p I M). 

DEFINITION ]0. Let sit C_ ~ _C ~ and sit Ccg _C ~t. We say that ~ and cg are 

independent over sit, if for any /7 ~ / 3  and ~ E t~ we have 

R,(/7, sit) = R,(/~ sit U 6). 

This definition requires some comments. First of all, it is not contradictory 

with Definition 3,7, as follows from Theorem 4. Second, the notion of 

independence does not depend upon the particular rank-notion R1 chosen 
(provided that, for any p ~ S * (T), R,(p)  < o0): this is a consequence of Theorem 

9. Finally the independence relation is symmetric (Theorem 6), and by axiom 5, 

if N and q~ are independent over sit, then for any /TE/~, 

R , ( b, sit) = R , ( b, sit O q~ ) . 

PROPOSITION 11. Let  sit C_ ~ C_~t and  sit C_ ~, and  suppose that ~t is 

(11B 1[ + II C [I)+-saturated. Then there exists ~ '  such that sit C_ ~ '  C_ Jl~, qr is 

sit-isomorphic to qg, and qg' and ~J are independent over sit. 

PROOF. Consider the set 

K = {(cr q~,f) ;  sit _c cs C ~, sit _c c~ _C At, ~ and cr 

are independent, and f is an M-isomorphism from ~ [, onto qr 

and define the order on K by setting 

((~1, 6~',, f,) < ((~2, (~2, /2) if and only if cg, C_ qgz, cg~ C_ rg,, 

and f2 extends fl. 
This set is not emply (since (sit, sit, ea.a) E K), and it is clear that any linearly 

ordered subset of K is bounded in K. So we may apply Zorn's lemma: let 

(~go, cg~, fo) be maximal in K. 
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Let c ~ C. Then there is c' C M'  such that 

From this, for any 

R,(b, ~;) = R,(/~ M); 

t(c', c~) =/~(t(c, C~o)) 

and R~(c', cr = R~(c', cr ~ ) .  

b~B,R~(b ,  CC~)=R~(~CC'oUc'). But we know that 

therefore ~ and cr c'  are independent, and by the 

maximality of (~1, cr fl), c E Co and Co = C. 

THEOREM 12. Let M C ~L, p ~ S.(M), ~tl C At, and suppose that [[ M [[ -> 

]l M, IJ + and ~ is saturated. I f  p, and p2 are two extensions of p in S . ( ~ )  such that 

R~(p~) = R~(p2), then there is an sg-automorphism f of ~ such that f"(p2) = p,. 

PROOF. Le tp~=p~  t ~ , , a n d p ~ = p 2  I ~ and let d and d2 be elements of M 

realizing p~ and p~' over ~tl respectively. Since t(& .d) = t(42, .if) = p, there is an 

aC-automorphism h of ~ such that h (4) = 45. Let M~' = h-t(M1) and call h '  the 

restriction of h to ~G, so that h '  is an isomorphism from ~ onto ~ , .  We have 

t(a, At') = h'"(t(42, ~ , ) )  = h '"(p;) .  

Now, by Proposition 11, there is ~ 2 U ~ ,  M U ~ 2  and g an (M U4)-  

isomorphism from X/2U fi onto ~ U  4, such that ~ z U  8 and ~ U  4 are 

independent over M U 4. Let g'  be the restriction of g to X/2, so that g'  is an 

isomorphism from X/~ onto X,t ~', and h'o g' is an isomorphism from ~,G onto .~1. 

We have 
t(4, ./R2) = ~'" (t(ti, .M~)) = (h'o g')" (p~). 

For any rfi E ,~r,, we have 

R,(rfi, M U 4) = R,(tfi, d,L O 4) 

since AG U fi and d,/, U d are independent over M U ~i. On the other hand, our 

hypothesis is: 

R,(a, M ) =  R,(4, ~ t )  = R I ( r  U t~) 

and by the reciprocity principle 

n,(m,  ~t) = R,(,~, ~t U a) .  

Therefore 

and 

R,(t~, ~ )  = R,(,~, Xt2 U a)  = n,(.~, Xr 

R,(4, ./g=) = R,(4, d,G O rfi). 
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Recall that this is true for any tfi E / ~ , .  So 

R,(ti, ~t/:) = R,(a, ~t/, O ~/:) 

and 

R,(ti, A/2) = R,(ti, ~r since R,(ti, 322) = R,(p~). 

We see that t(ti, d~, U ~2) and pl I ~t, O ~t2 are two extensions of p'~, of equal 

rank. So by Theorem 4, t(r d~t~ U d/2) = p~ I d~ U d, t2 and t(ti, d/t2) _C pl. 

Now let f be an ~-automorphism of d /which  extends h'  o g,. Then/~" (p2) is an 

extension of (h'o g,)- (p;) = t(~i, d~t2) and we have seen that the same holds for p~. 

But they still have the same rank as p, and therefore f"(p2)= p~. 

PROPOSITION 13. Let ~ C_ ~,  and p ~ S , (  ~ ). The three following conditions 

are equivalent: 

1/ R~(p) = R~(p I ~t). 

2/ For any d~ and d~' such that ~t C_ d~ C_ d~' and ~ C_ Jl ' ,  there is an extension 

q of p in S, (d,t') such that q is the heir of q I d,t. 

3/ There exist d,t and tilt' such that ~l C_ d~ C_ d~', ~ C_ d~' and ~ and tilt are 

independent over ~t, and an extension q of p in S,(d/l') such that q is the heir of 
qr . 

PROOF. 

1/---~2/. Let q be an extension of p in S,(d~') such that R~(q)= Rl(p) = 

R~(p I~l) .  By axiom 1, R~(q)- -R~(q  Id l ) ,  and q is the heir of q Id't- 

2/---~ 3/ follows immediately from Proposition 11. 

3/---~ 1/. Let d/t~ _~ d,t', and 6 E / ~  realizes q over d,t'. The hypothesis implies 

R~(E,,I,t')= R~(d,~t), a n d f o r a n y  / ~ / ~ ,  R~(6, At U b ) = R ~ ( 6 ,  A/t) 

and 

consequently, 

R I ( E , ~ ) =  R,(E,~t)  and R, (p)  = R,(p  I ~ ) .  

REMARK. For a type and one of its restrictions, the relation "to have the 

same rank" does not depend on the rank-notion considered. It seems normal, 

therefore that this relation be expressible without any mention of any rank- 

notion: this is precisely the content of condition 2/. 
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COROLLARY 14. For ~t C_ ~,  and n ~ to, let 

F n  _ . ~ , ~ - { p , p ~ S , ( ~ 3 )  and R I ( p ) = R ~ ( p  I ~ ) } .  

Then F~.~ is a closed set. 

PROOF. Let d d , ~ '  be such that M_Cdd _C d~', ~ C d d '  and ~ and d~ are 

independent  over  ~ .  Then, by the preceding proposit ion 

F~,~ = h ~,~,o i~ ,~S"  (rid)) 

and we know that the image of a compact  Hausdorff  space under a continuous 

map is a closed set. 

TrtEOREM 15. Suppose ~d C_ ~ and let I'"~,~ be the restriction of i "~.~ to F~,~;" 

then j~,~ is an open map. Observe also that by axiom 3/, j~,~ is an onto map. 

PROOF. For notational convenience, set F = F"  '" ~,~, a n d j  = 1~,~. Let U be an 

open set of F, and V = j (U) .  

1/ We first prove that V is an open set of S , (M) when ~ is a saturated model 

of T, with liB I I>IIA I1+11TII. Let U* = U{f " (U) ;  f is an M-automorphism of 

~}.  Then U* is an open set of F, and j (U*)  = j ( U )  = V. Let G = F - U*; G is 

a closed set of F, and since j is onto S , (M)  - V C j (G) .  On the other hand, j ( G )  

is a closed set; so we will be done if we prove that S . ( J ) - V = j ( G )  or, 

equivalently, j ( G ) n  V = O. To reach a contradiction, suppose q E/ '  ( G ) n  V; 

there is q, E G such that j (q,)  = q, and q: ~ U such that ](q2) -- q. By Theorem 

12, there is an M-automorphism f of ~ such that ql = f"  (q2), and qz E U*, which 

is impossible. 

2/ Consider now the general case. Let dd be a saturated model which includes 

of cardinality greater  than II A II + II T II. There is U1, an open set in S , ( ~ ) ,  

such that U = U, n F. Let 

U ' = / i "  ~-1/U ~n F~,~.  

n . n  U Then U '  is an open set in F~,~ and it suffices to prove that V = /~ .~(  ). 
' "" E R .n  = '-  If q E U ,  l~,,~(q) U,, and ,(j~,~(q)) R~(q I s  d) so 1~.~(q)~ U and 

j~,~(q) = jQ'?,,~(q)) E v. If p E v, there is pl E U such that J(PO = P. Let q be an 

extension of pl in S,(d,/), such that R~(q)= R,(pl)  = R~(p). Then q E U '  and 

j~,~t(q) = p. 

COROLLARY 16. Let ~ C ~,  p E S , ( ~ ) ,  and suppose that R~(p) = R~(p I s~) 

and p I sd is not isolated. Then p is not isolated. 
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PROOF. If p were isolated, it would be isolated in F~.~, and p I ~r would also 

be isolated in S.( .d).  

COROLLARY 17. Suppose T denumerable, ~il C_ :R, A finite, and ~ prime over 
~.  Let.t1' C_ JR. Then there is ~o C_ ~R ', Bo finite, such that :R ' is prime over ~o. 

PROOF. Let d be a sequence which enumerates A, and consider 

a = inf{Rl(d, ~ ) ;  ~ _C J/t', B is finite}. 

There is ~o _C M', Bo finite, such that a = R~(d, ~o). Let bo be a sequence which 

enumerates Bo, and ~ @ M'. 

We see that Rl(d ,~oU ~)= R~(d,~o), and therefore R~(tT,~oU d) = 

R~(tT, ~o). But t(?, ~o U d) is isolated (because t(6 ^ 60, M) is), and, by Corollary 

16, t(~, ~o) is isolated. 

We shall conclude this chapter with some remarks. We assume now that T is 

stable. 

1) The cardinal h in axiom 4/ can be taken to be 2 rml. Let p E S,(~r and 

_DM and suppose R(p )<oo .  There is 5goC_ 5g, Ao finite, such that R ( p ) =  

R (p I Mo), and let ,/~, At' be such that B C_ M', Mo _C M C d,~', II M II = [[ T II. Let 

/x be a cardinal, and {pl;i < tz} a set of extensions of p in S . ( ~ )  such that, for 

any i < j < l~, pi# pj and R(p~)= R(p). 
For every i < p~, there is an extension q~ of pi in S,(d,/) such that R(q~) = 

R(p,) = R ( p ) =  R(p  I ~o), and by axiom 1/, R(q~)= R(qi I At). Therefore,  by 

Theorem 4, for any i < j  <tz,  q, I ~  qi I ~ and /z _-< [I S,(d,/)[I -< 2 Iml. 

2) Suppose now that there exists a rank-notion R such that, for any 

p E S*(T), R ( p ) < ~ .  For any ~r ~ K(T),  we have 

S , (M)=  U{F~,~o; MoC_M, Ao finite}, 

where F '  - �9 ~,~o-{P,P E S,(M) and R ( p ) =  R(p I Mo}. By remark 1/, [[Fa,~,o[[- < 

2 II'rll. IIS,(Mo)I[_-<2 Iml and it is clear that II{Mo;MoC_M, ao finite}ll=[laJl.  

Therefore,  for any sg c_ K(T) ,  II S~(M)II <--21t~lll[a II, and T is superstable. 

3) There exists an ordinal a such that, for any p E S*(T), if R ( p ) >  a, then 

R(p)  = oo: let At be an l%-saturated model. If p E S*(T), there is M E K(T),  A 
finite, such that R ( p ) = R ( p  Is4), and M'C_M and p 'US , (M' )  such that 

R(p') = R(p).  There also exists q @ S. (M) such that R(q)  = R(p).  Therefore  it 

suffices to take a = sup{R(p);p E U , S . ( M )  and R ( p ) E  On}. 
4) It should be noted that all rank-notions which have been introduced (Ro,  
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and the various notions introduced by Shelah) satisfy a stronger axiom than 5), 

namely; 

5') If p E S.(~t)  and R(p)~=a, there is poC_p, po finite such that, for any 

q ~_po, q E S.(~I), R(q)  < - a. 

This can be topologically expressed by a continuity property of R :  For any 

~t,n, and a ~ On, the set {p;p ES . ( ,d )  and R ( p ) > a }  is closed in S,(s4). 

5. The  rank U and Lachlan's  theorem 

In this section T will be assumed to be superstable, and L without constants or 

function symbols. 

DEFINITION 1. Let R be a rank-notion; we shall say that R is connected if 

and only if: 

1) For any p E S*(T), R ( p ) < ~ .  

2) For any p E S*(T) and c~ E On, if R ( p ) > a ,  then there is a complete 

extension p '  of p such that R (p') = t~. 

THEOREM 2. There is one and only one connected rank-notion. 

PROOF. The proof will follow immediately from Lemma 3 and 4. 

LEMMA 3. Let V be a connected rank-notion and R be a rank-notion. Then 

for any p E S*(T), R(p)>= V(p). 

PROOF. By induction suppose that we know that for all /3 < a and 

p E S*(T),  V(p) >- fl implies R(p)  >-/3. Now let q ~ S , ( ~ )  such that V(p) >= ct. 

Then for any/3 < a, there exist ~ _~ ~t and an extension q '  of q in S, ( ~ )  such 

that V(q') =/3. By the induction hypothesis we infer R (q') _->/3, and by Theorem 

4, 9, R (q) > R (q') or R (q) = ~. In either case R (q) >/3, and since this is true for 

any /3 < a, R (q) _-> a. 

LEMMA 4. There exists a connected rank-notion. 

PROOF. Let R be a rank-notion such that for any p ~ S * ( T ) ,  R ( p ) < . ~ .  

Define a predicate on On x S *(T), denoted by " U ( p )  >- t~ ", by induction on a : 

"U(p)_->0 '' is true for any p E S*(T). 

If c~ is a limit ordinal, then " U ( p ) _ -  > a " ,  is true if and only if for all /3 < a, 

" U ( p )  >-/3" is true. 

" U ( p )  = > ~ + 1" if and only if there is a complete extension p '  of p such that 

"U( p ' ) _ -  > a "  is true and R ( p ) ~  R(p'). 
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If there are ordinals a such that " U ( p )  >- a + 1" is false, we shall denote U(p) 
the least such ordinal; if not we set U(p)= oo. 

Claim 1. If a _-> fl, and " U ( p )  >-_ a . . . .  is true, then " U ( p )  >- fl" is true. The 

proof is by induction on ft. For /3 --0 or fl a limit ordinal the result is clear. 

When a is a limit ordinal, it is again obvious, so we may assume that a -- a ' +  1 

and fl = fl ' + 1. Then there is p', a complete extension of p, such that R (p') < 

R(p), and " U ( p ' ) _ - a " '  is true. By the induction hypothesis we know that 

"U(p ' )  ~ f l" '  is true, and therefore " U ( p ) > - f l "  is true. 

It easily follows that "U(p)_-  > or" is true if and only if U(p)>= a. 
Claim 2. The map U verifies axioms 1 /and  2 /o f  Definition 4,1. This should 

be clear from the definition of U. 

Claim 3. Suppose that p E S n ( ~ ) ,  M_C~,  and R ( p ) = R ( p  IM) ;  then 

U(p)= U(p I M). We prove by induction on a that U(p I M)>- a implies 

U(p)>-a. For a --0 and a limit there is nothing to say. Suppose a =/~ + 1; 

there is c~_D~t, p'ES,(C~)such that U(p')>-fl and R(p' )<R(p) .  We may 

suppose that C - A  is finite and c~ and ~ are included in a common 

lIB II+-saturated model ~ .  Let iT' be a sequence which enumerates C - A ,  

d E M "  be such that t ( d , ~ ) = p ,  and t ~ M ,  d ' E ) Q  such that: 

t (d' ,  = p'  

t(e ^ d, M) = t(e '^ d', M) 

R ((, M U d) = R ((, ~ U d).  

We then have: 

U(d, Mt3()>-_[3 and R(d, M t J ( ) < R ( d , M ) = R ( d , ~ ) .  

From the reciprocity principle, we have that for any G E/3, 

R ( ~ M ) = R ( b , , M U d )  and R(b,,MtJd)=R(G, M U d U ~ )  

and therefore 

R(b, M U E U d ) = R ( 6 ,  MtJ#)  and R ( d , ~ U E ) = R ( d ,  MO~) .  

By the induction hypothesis, U ( d , ~  U~)_->fl, and on the other hand 

R(d,  ~ U ~) < R(d, ~ ) .  Therefore, U(d, 9 )  = U(p) >-_ ~ + 1. 
It is also clear from the definition of U that if U(p)--U(p I M), then 

R(p) = R(p [ ~ ) ;  hence U verifies axioms 3/, 4 / a n d  5 / o f  Definition 4,1: we 

have proved that U is a rank-notion. 



8 0  D. L A S C A R  Israel J. Math.  

Claim 4. For all p E S*(T) ,  U(p)  is an ordinal. Suppose not, and let 

p E S* (T)  be such that U(p)  = oo and R ( p )  is minimal. We know that there is 

an t~ E On such that U(q) >- a implies U(q)  = oo. But U(p)  _-__ a + 1, and there is 

a complete extension p '  of p such that U(p')>= a and R ( p ) >  R(p') .  But then 

U(p')  = ~, which contradicts the minimality of R(p) .  

Claim 5. U is a connected rank-notion. The only thing which remains to be 

shown is that if p E S,(M) and U(p)  > fl, then there is ~3 D M and p ' ~  S , ( ~ )  

such that U(p ' )=  fl and p C_p'. Let 

/3,, = min { U(q); q is a complete extension of p and U(q)  >=/3}. 

Clearly/30 =>/3, and there is p~, a complete extension of p, such that U(p,) =/30. If 

we suppose /3o >/3, then U(p,)  => 13 + 1, and there is p2 a complete extension of 

p~ (and also of p) such that U(p2) = >/3 and R (p2) < R(p~). But, by Theorem 4,9, 

this implies U(p2)< U(pO, and this contradicts the minimality of /30. 

This concludes the proof of Theorem 2. We see that the (unique) connected 

rank-notion U introduced in the above proof enjoys another universal property: 

it is the least rank-notion, c*) 

We refer to [18, p. 367] or to [7, p. 80] for the definition of the natural sum of 

ordinals, which we shall denote by a ( + ) a '  (in [7], it is written o-(a ,a ' ) ) .  A 

characteristic property of this natural sum is that, if 

Or' ~-~ too ln l  + o.)#t2n2 + �9 �9 �9 -/t- (.o ~162 k 

and 

a'  = o)~ ~ + oJ~ ~ + �9 .. + w~ 

where n,, n2 , "  ", n~, n ' , , . - . ,  n~, are non-negative integers and (/31,/32,"" ", ilk) is a 

strictly decreasing sequence of ordinals, then 

O r ( +  ) O ~ ' =  O) 0' " ( h i  + n~)  -1- o9 02. ( n 2 +  / 1 ; ) + - ' ' - +  o) ok �9 (nk + n ~ ) .  

We have 

PROPOSITION 5. For any ordinals a, /3, y, a~: 

1) a ( + ) / 3 = f l ( + ) a a n d  ( a ( + ) f l ) ( + ) y = a ( + ) ( / 3 ( + ) y ) .  

2) I f  a, < a, then a,( + )fl < a ( + ) / 3 .  

3) ,~( + ) /3 >-_ ,~ + /3. 
4) I f  a ( + )/3 > y, then there exist c~2 and/32 such that a2 < a and a2( + )/3 >-" y or 

/32 </3 and a ( + )/32 --> % 

O) It was proved by Prof. Shelah that this rank does not in general  satisfy axiom 5' which was 
discussed at the end of the preceding section. 
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5) If  n E w ,  then a(  + )n = a + n. 

6) If  f l~O and 3' < o~, then a + w e > c~(+)T. 

PROOF. Properties 1) to 4) are in [7]. Properties 5) and 6) follow immediately 
from the characteristic property. 

In Propositions 6 through 9, we shall assume M _C M, /~ ~ M k, ? ~ M ~, and M 

II A II+-saturated. 

THEOREM 6. Let c~ be an ordinal; then: 

U(b, ~ )  >= U(b, J U ~) ( + )a implies U(6, ~/) => U(g, ~t U/~) + a. 

PROOF. The proof will proceed by induction on U(/~ ~r Let a '  < a ;  then 
U(/~ sr > U(/~ ~/O ~) (+ )a ' ,  and since U is connected there is d E ~r such 
that 

(1) U(/~ ~ )  > U(/~ J U d) and 
(2) U(/~ ~ U d)  = U(/~ ~ U ,5) ( + )c~ '. 

On the other hand t(b ^ d, sO) is all that matters, so we may assume 
(3) U(d,  .~ U g U ~) = U(d, .~i U b), 

and by reciprocity 
(4) U(g, ,~ U b) = U(c?, ,~/U/~ U d). 
Two cases arise: 
Case 1. U(b, J U 6 ) =  U(b, J U S U d ) .  

Then by reciprocity, (3) and (1) we have 
(5) u(g,  ~ u e) =- u(g, ~ u e u g) = u(g, ~ u g) < u(g, ~r 

U(/~ ~ U d ) <  U(/~ ~r we can use (2) and utilize the induction 
to get: 
~r U d)>= U ( e , ~  U b U d ) +  o,'. 

Now since 
hypothesis 

(6) U(6, 

By (4) 
(7) u(e, ~r u d) >= u(e, ~ u g) + ,~' 

and by (5) and reciprocity 
(8) u(e, ~ )  >-_ u(e, ~r u g) + ~'+ 1. 
Case 2. U(b, ,~l U ~) >= U(b, sr U ~ U d). 

Then by (2) 
(9) U(b, ~r U St) __> U(/~, ~r U e U d) ( + ) (a '  + 1) 

and, again by induction 
(10) u(e,  ~ u.d) = u(e, sr u g u d) + a '+  1 

and then, by (4), we get again 
(8) u(e, ~r >= u(e, ~r u g) + o,' + 1. 



82 D. LASCAR Israel J. Math. 

So (8) is t rue in every  case, for  any c~' < c~, and 

u(e, ~r _-> u(e, ~r u 6) + a. 

COROLLARY 7. For any a E On and n E to, we have 

U(b, gt)  >- U(b, .d U e) + to ~ . n iff U(e, gt)  >= U(e, gt U b) + to" �9 n. 

PROOF. B y  P r o p o s i t i o n  4 ,  for any /3 < to ~ �9 n, we have  

U(E ~ ) -  -> U(E,~ U e)(+)/3 

and by the last t h e o r e m  

u(-c, ~)_-> u ( ~ , ~  u 6)+/3. 

There fo re ,  if a ~ 0 ,  to ~ �9 n is a limit ordinal  

s u p { U ( &  sr U / 7 ) + / 3 ; / 3  < t o ~  �9 n } =  U(&~r  U b ' )+  to ~ .n.  

If c~ = O, then n = to ~ �9 n, and it is immedia te .  

and U(~, ~r - 

THEOREM 8. We have 

u(e, sr u 6)+ u(6, ~r = u(6^e, ~r < u(e, sr u 6 ) (+)  u(6, ~r 

PROOF. 

1) We  first p rove  that  

U(e,  sr U b)  = U ( b  ^ e, sr U 6). 

If we suppose  U(& gt  U/~) -> U(6^t~, sr U/7) + 1, then we deduce  

u(~, ~r u 6)_- > u(e, ~r u 6 u  6 u  e ) ( + ) ( u ( 6 ^  e, sr u 6)+ 1) 

and by T h e o r e m  6, 

u(6^ e, ~r u 6)_- > u(6^ e, ~r u E u  e)+ u(6^ e, ~r u 6)+ 1, 

which is impossible .  

If we now assume U ( 6  ^ e, ~r U/7) _-> U(t?, sr U/7) + 1, then 

U ( b  ^ & ~r U 6)_-  > U ( b ^  t?, ,.d U / ~ U  t? ) (+  ) (U(t?, sr U / ~ ) +  1) 

and by T h e o r e m  6, 

u(e, ~r u/7)--- u(e, ~r u 6 u  6 u  e)+ u(e, ~t w 6)+ 1 

which is again impossible .  
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2) U(6"g,M) >- _ U(g,M U 6 ) ( + ) ( U ( / ~ , M ) +  1) is impossible because it im- 

plies U(6^g,M)>= U(b^&M U / ~ ) ( + ) ( U ( / ~  M ) +  1) and 

u(6, s~) _-> u(6, s~ u 6 u e) + u(E sr + i. 

3) On the other hand, we have U(b, M) _->_ U(b, M U/7 O g) ( + ) U (6, M) and 

therefore U ( b  ^ ~, M) _-> U ( b  ^ & M O 6) ( + ) U (6, M). 

It is not in general the case that U(6^&M)=U(6, MUg)(+)U(g,M). 
However,  something positive can be said: 

We shall say that/~ and ~ are independent over M if I/~1 and I c [ are, and that/~ 

and ~ are independent if they are independent over the empty set. 

PROPOSITION 9. If 6 and ~ are independent over M, then 

U(b ̂  e, M) = U(b, sO) ( + ) U(e, ~t). 

PROOF. We only have to prove U(6^&M)>-_U(6, M)(+)U((,M). We 

proceed by induction on U(b, M ) ( +  ) U  (& M). Suppose by way of contradic- 

tion, that 

u(E^& ~ ) <  u(E ~ ) ( + )  u(e, so); 

then there exist a and 3 such that 

(1) a < U(b,M) and U(b^&M)<=a (+)U(&M) or 

(2) /3 < U(t?,M) and U(b^&M)<=/3(+)U(6, M). 
The proof is the same in either case, so we may assume (1). 

There is d E fi,I such that 
(3) U(/~M U d)_-> a and 

(4) u(E .~) > u(E ,~ o d). 
Moreover,  since nothing but t(b ^ d, M) matters, we may assume 

(5) U(d, sr U 6) = U(,/, ~r U/7 U e). 

Recall that by hypothesis 

(6) u(e, s~ u E) = u(e, ~ ) .  

By (5) and (6) and reciprocity 

(7) U ( & M U 6 ) =  U(g, M U 6 U d ) =  U ( g , M ) =  U ( & M U 6 )  

and therefore 6 and t~ are independent over M U d. But since U(b,M U d) 
(+)U(t~,.~Ud)< U(/~M)(+)U(t3,~) by (4) we may apply the induction 
hypothesis, and get 

(8) U(6^e,,~Ud) =U(EMUd)(+)U(aMUd) 
and from (3) and (7) 

(9) U(b^E,M O d)>= o~(+) U(c,,M). 
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F r o m  (5) 

(10) U(d ,  sg U 6 ^ e)  _-< U(d,  sr U b) < U(d,  sO), 

so by reciproci ty  

(11) U ( b ^ c ,  dUd)<U(b^c,M). 
Now (9) and (11) contradic t  (1). 

DEFINITION 10. Let  g' be a set of subs t ructures  of M and sr C_ At ; we say that  

is independent  over  sr if for  any ~ E $, ~3 and U ($  - {N}) are i ndependen t  

ove r  sO. 

If S is a subset  of  M, S is independent  over  sr if {1 g t, - g ~ S} is. If  sg = Q,  we 

do not  men t ion  it. 

We  leave the p roof  of the two fol lowing propos i t ions  to the reader .  

PROPOSmON 11. Let  sr C_ At, and for every a < ;t, sr C_ At such that sr and 

U o<~sr are independent  over sO. Then {sgo ; a < A} is independent  over sO. 

PROPOSmON 12. Let  sg C_At and ~ be a set o f  subsets of  At which is 

independent  over sr Suppose that { ~  ; i E I} is a partition of  ~. Then { U ~ ; 

i E I} is independent  over ~ .  

THEOREM 13. Let  sg C At, 6 ~ lf4, S C_ f4, and suppose that S is independent  

over sg and for any g E S, U(b, sg U g) < U(b, M).  We  may  write 

(1) U(b, M)  = to o'. n~ + too~ . n2 + " " + too~ . nk where k, n,, . . ., nk are strictly 

positive integers, and ([3~, f12, " " ", ~k ) is a strictly decreasing sequence of  ordinals. 

Then 

II s II < (n, + 1) (n2 + 1)-. "(nk + 1). 

PROOF. We  shall p rove  by induction on i, 0 <_- i _-< k, that  if the hypo theses  are 

satisfied, and if 

I I s f l = ( n k _ , + l ) ( n k _ , + ~ + l ) . . . ( n , + l ) ,  t h e n f o r  C = U { I g l ;  g e S } ,  

we have  

U(b, sC U ~ )  <<- to~ . n~ + to~ n2 + . . . + to ~ . . . . . .  n ,  ~-1. 

1) For  i = 0, we have  II S II = + 1; let 

S = {s,;0_<- ~j _-<n~}. 

Then ,  for  any / ' ,  0 _-</' _-< nk, we have  

u(s s~) > u(s u ~,). 
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From this and from (1) we infer: 

u(~ ~)_-> u(/~ ~r u r ~, 

and by Corollary 7, since s is independent over ~t, 

i< j  

_-< u(~, ~)  = u ( r  s~ u U I ~ I) 
i< j  

and again by Corollary 7, 

This being true for j between 0 and nk, we get 

U(/~ ,.d) ~ U(/~ ,~ U c~)+ w# .... (nk + 1) 

U ( b ,  sg U Cs w n "  n, + w ~  nz + " " + w ~ .... nk-,. 

and by (1) 

85 

and 

u(E, s~) => u(t ; , ,~ u ~ )+  ,.o,,k-, 

+oJ ~,-, =< U ( & ~ t  U / 7 ) +  ~o ~k-, 

_-< U(~, . .~)= U ( ~ , . ~  U U ~) 

As above 

2) Let us prove now the property for i 0 < i =< k)  assuming it for i - 1. Let 

{Si;0_--<j _<-nk-,} be a partition of S, such that for every j, 0=<j =< n~_,, 

[IS, II = (nk_,+, + 1) (nk-,+2 + 1)-..(nk + 1) 

and set % = U {I g I, g ~ Sj}, and ~ a finite sequence which enumerates Cj. By 

Proposition 11, the set {~;0-- - j_-  < n~_,} is independent over M, and by the 
induction hypothesis, for any j, 0 <= ] <= nk-~ : 

U(6 , .~ l  U '~ )<  to~"  n, + co~" n2 + "'" + t o  a'-' " m , - .  
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and 

U(b,~t)>= U(b ,M U ~ ) +  ton'-,(nk_, + 1). 

H e n c e  f rom (1) we get: 

U(b, ~t t.J ~ ) < to~,. n~ + to ~ .  n~ + . .  �9 + to~, . . . . .  n k-,-~ 

and the t h e o r e m  is proved.  

As  a consequence  we get  the fol lowing t h e o r e m  of Lach lan ' s  ([8]): 

TH~Og~M 14. I f  T is a countable superstable theory which is not 1%- 

categorical, then T has an infinite number of isomorphism types of  countable 
models. 

PROOF. First of all, we m a y  suppose  that ,  for  all n E to, S , ( T )  is countab le ,  

and the re fo re  for  all gt  such that  A is finite, $ , ( ~ )  is countable ,  and there  is a 

mode l  p r ime  ove r  ~'.  O n  the o the r  hand,  since T is not  ato-categorical, there  is n 

and p E S , ( T )  such that  p is not  isolated.  

Cons ider  the class: 

K = {M ; there  exists M C M, A finite and M pr ime  ove r  M}. 

W e  shall p rove  tha t  for  any  M,,  M2, �9 �9 d, tk E K, there  exists M '  E K which is not  

i somorph ic  to any  M,, 1 =< i -< k. 

Le t  M" be  an No-saturated mode l  of  T ;  we m a y  assume that  each  M, is 

included in M";  suppose  ~ E M~, and ./it, p r ime  ove r  ti, ; set  ti = tL ^ ~, ^- �9 �9 ~ dk, 

and 

U( t i )  = to ~1. n~ + to # ' .  n2+ �9 �9 �9 + to #" �9 nk 

where  k, nl, n 2 , "  ", 'm are strictly posi t ive number s  and (/~1,/32, �9 �9 ilL) a strictly 

decreas ing  sequence  of ordinals.  Set m = (n~ + 1) (n2 + 1). .  "(nk+~). 

N o w  define by  induct ion on l E t  o, /~ E M""  such tha t  t ( / ~ ) = p  and 

U(/~, U ,<,/~) = U(/~).  T h e n  by  Preposi t ion  10, {/~, i ~ to} is independen t .  Le t  

b = b0 ̂  b~ ̂ . �9 �9 ̂/~m, and let d r '  be  a mode l  p r ime  o v e r / ~  T o  p rove  that  JR' is not  

i somorph ic  to any  dt~(0 ~ i ~ k )  it suffices to p rove  that  t(/~) is not  real ized in 

any  ~ , ,  or  m o r e  s imply that  t (b )  is not  real ized in ~ ,  a mode l  p r ime  ove r  d. 

If we suppose  the  cont ra ry ,  then  there  exist, for  0 ~ i _-- m, ~ E M~ such that  

t ( ~ )  = p, and { ~ ; 0 _ -  < i _-< m} is independen t .  But  for  all i, 0_-  < i _-< m, U(t~) > 

U(~,t~)  by Coro l la ry  4,16, as t(~,) is not  isolated while t(~, ti) is; but  this is 

imposs ib le  by the choice of  m, the value of U ( ~ )  and  T h e o r e m  13. 
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